KLEINMAN POINTS OR [YOUR] POINTS

The September 2001 Bridge World contains a letter from Doug Bennion of Toronto that defines a new point-count, Little Jack Points (LJP), as A $=61 / 2, K=41 / 2$, $\mathrm{Q}=21 / 2$ and $\mathrm{J}=1$, which Bennion's research confirms as being superior to the usual 4-3-2-1 provided an adjustment is made for honor synergy: add $1 / 2$ for any two of these cards working together in the same suit except a queen-jack combination.

You may notice that (a) ^A92 $\vee \mathrm{K} 8 \bullet \mathrm{J743} \bullet$ Q653, a seemingly "average" hand, contains $141 / 2$ LJP. That won't do, for one of the points of using point-count is to have a common unit of measure that partners and opponents can understand. If you're filling out a convention card that has a space for the range of a 1 NT response to 1%, it is unacceptable to write " $11 \frac{1}{2}$ to $141 / 2$ LJP" (the approximate equivalent of the standard "8 to 10" HCP).

To create the necessary commensurability, we might transform the scales, multiplying all values by $10 / 14.5$ and rounding to the nearest tenth. This yields the point-count: $\mathrm{A}=4.5, \mathrm{~K}=3.1, \mathrm{Q}=1.7$ and $\mathrm{J}=0.7$, all in HCP terms.

However, we can do better still.
(1) Double all of Bennion's values, producing $A=13, K=9, Q=5, J=2$ and whole-point adjustments instead of halves. Now the "average" hand appears to contain 29 of the new points.
(2) Notice that (a) is not an "average" hand but a poorer than average hand, and an atypical "10-HCP" hand at that. The probability that a hand with one ace, one king, one queen and one jack has no synergy points turns out to be exactly the same as the probability that it has two synergy points. Therefore on the average, synergy adjustments give it 30 of the new points, not 29 . A more typical "10-HCP" hand is (b) ^A92 $\vee \mathrm{KJ} 84 \bullet 73 \star$ Q653.
(3) Restate the synergy adjustment as: add 1 point for every picture-card that is accompanied by an ace or king.

The changes introduced so far yield Double LJP. However, Bennion did not make some adjustments that I recommend to reflect my judgment, which is very close to the judgment of Edgar Kaplan as implemented in "Four C's" (Bridge World, October 1982). So, to reflect my judgment and Kaplan's more accurately:

* Add for 10s when accompanied by 9 s or higher honors: add 1 for one such "companion" in the suit, 2 for two or more companions.
* Subtract 1 for any suit whose lowest card is higher than a 10.
* Subtract 1 for unguarded picture-cards (e.g. \uparrow K, $\vee \mathrm{Qx}$ or $\downarrow \mathrm{Jxx}$).
* Subtract 2 for a flat hand (4-3-3-3 distribution).

After making these adjustments (or any others you like) ...
(4) Divide the resulting count by 3 to get the equivalent HCP ("Kleinman Points" or "[Your] Points" depending on which adjustments you make) using the customary scale. If there's no remainder, you have a "bad" hand for its point-count, e.g. $45 / 3=\mathrm{a}$ "bad" 15 HCP . If the remainder is 1 , you have an ordinary hand for its point-count, e.g. $46 / 3=$ an ordinary 15 HCP. If the remainder is 2 , you have a "good" hand for its point-count, e.g. $47 / 3$ = a "good" 15 HCP. This terminology is consistent with the usage of "good" and "bad" for point-counts that we have seen in The Bridge World for decades (but may soon be changed to "weak" and "strong").

Bennion researched only the values of high cards when balanced hand faces balanced hand. So even when contemplating notrump bids, you should assign more weight to aces and less to queens and jacks ... to reflect their relative values in the suit contracts you may reach when partner has an unbalanced hand.

